
Runtime monitoring of contract regulated web services

(Extended Abstract)
A. Lomuscio

Imperial College London
a.lomuscio@doc.ic.ac.uk

M. Solanki
Univ. of Leicester

m.solanki@mcs.le.ac.uk

W. Penczek
ICS PAS and

Univ. of Podlasie
penczek@ipipan.waw.pl

M. Szreter
ICS PAS

mszreter@ipipan.waw.pl

ABSTRACT
We investigate the problem of locally monitoring contract
regulated behaviours agent-based in web services. We en-
code contract clauses in service specifications by using ex-
tended timed automata. We propose a non intrusive local
monitoring framework along with an API to monitor the
fulfilment (or violation) of contractual obligations. We illus-
trate our methodology by monitoring a service composition
scenario from the vehicle repair domain, and report on the
experimental results.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods

General Terms
Verification, Reliability

Keywords
Monitoring of web services, SAT-based model checking

1. FRAMEWORK
When services are combined, a significant challenge is to

regulate their interactions. Service level agreements (SLAs)
provide a useful mechanism to establish agreed levels of ser-
vice provision when interactions are invoked within certain
parameters. In web services the traditional notion employed
for similar purposes is the one of service level agreement
(SLA) [3]. Although SLAs are useful, they can represent
only basic agreements of service provision. Applications run-
ning agent-based activities require more general and sophis-
ticated declarative specifications certifying legal-like agree-
ments among the parties. Additionally, agents maximising
their own utilities may indeed choose to violate these agree-
ments for a better payoff differently. While this is unavoid-
able, we may still wish to monitor the executions and track
at run time the agreements that are being fulfilled and vio-
lated.

In this short paper, we survey our approach to runtime
monitoring for local behaviours in contract regulated web

Cite as: Runtime monitoring of contract regulated web services (Ex-
tended Abstract), A. Lomuscio, W. Penczek, M. Solanki and M. Szreter,
Proc. of 9th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2010), van der Hoek, Kaminka, Lespérance,
Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

services. We represent both all possible behaviours and the
contractually-correct ones as appropriate timed automata
[1] at local web-service level. We present a local contract
runtime monitor (CRM) based on the symbolic toolkit Ver-
ics [2], a symbolic model checker for timed-automata. CRM
checks the local service’s execution at runtime against the
symbolic representations provided, and reports back to the
service (or directly to the engineer) any mismatch, or vi-
olation, between the contract-compliant behaviours origi-
nally prescribed and the ones actually received in the input
stream.

The significant advantage of the approach is that we do
not need to keep the whole state space of the possible and
the contract-compliant behaviours in memory, but we can
simply call the timed-automata engine at runtime to match
moves against the stream of events coming from the input.

We assume a slightly modified definition of timed au-
tomata with discrete data (TADD) [5]. Our approach for
local monitoring, Runtime Monitoring for Contract-based
Services, is illustrated in Figure 1. For each agent to be
monitored all its possible behaviours (contract-compliant
and otherwise) are represented as a TADD and stored in
the checker. The BMC based monitoring engine checks the
snapshots against their TADD specification and reports back
whether the actual runtime behaviours are in compliance
with the contractually prescribed behaviour as specified in
the TADD, or, if not, states the clause that has been violated
in the present transition.

A significant feature of our framework is that we do not
place any restriction on service implementation in terms of
development infrastructure and execution platforms.

We use the XML format generated by the model checker
UPPAAL [4] for representing the TADD. Our choice is mo-
tivated by the fact that UPPAAL provides a user friendly
GUI. The TADD specification encodes all possible desired
behaviours for a service. Typically, the full set of behaviours
for a contract regulated service can be derived from:

• its contractually compliant behaviours. These behaviours
encapsulate contractual obligations for the service.

• behaviours that are classified as violations of the con-
tract.

• behaviours that define a recovery from incurred viola-
tions.

The monitoring engine is the core component responsible for
testing the conformance of runtime service behaviour against



Monitor
(CRM)

S

S1

Not Valid validrecovery

traces
Desired service

behaviour as
Timed Automata

Contract Specification

S2

Figure 1: The general architecture and methodology

the prescribed TADD specification of the service. For each
execution step, the answer returned by the monitoring en-
gine is one of the following:

• GREEN - the step is conforming with the specifica-
tion, i.e., there is a contract compliant transition be-
tween the source and target states.

• RED - a red state is reached as a target of the transi-
tion given, i.e., a contract has been violated as a result
of the transition. This also signifies the fact that the
inputs do not comply with the extended format of the
TADD for the service.

• NONE - the step is not conforming with the specifica-
tion, i.e., there is no such transition, neither contract
compliant or otherwise.

• ERROR - the specification given does not mirror the
observed transition so it amounts to an error.

Results reported at runtime may be analysed in several ways.
In case of contract compliant transitions, the service can con-
tinue executing as per the orchestrated workflow. For con-
tract violating transitions, the service administrator may im-
pose on the service to execute one of the prescribed recovery
transition. In other cases the administrator may choose to
override the violations reported and allow the service to con-
tinue execution. For a continuous contract violating tran-
sition being reported, the service may be stopped. Finally,
the outputs generated may be stored in a log file for future
offline analysis.

2. A CASE STUDY: CONTRACTS FOR VE-
HICLE REPAIRS

We consider a service composition scenario that defines
a repair contract between a client (C) and a vehicle repair
company (RC). The informal behaviour of RC is described
as follows. When RC receives a request from C to undertake
a repair job, it sends a repair proposal. In response, C sends
an acceptance or rejection message. If accepted, RC sends
a contract initiation message to C. RC then waits for the
vehicle to arrive, failing which it sends two reminders to C.
If the vehicle fails to arrive, it takes an offline action. As
per the contract, RC is obliged to assess the damage, repair
the vehicle and send a report to C. On receiving the report,

C is obliged to send payment to RC. If the payment is not
sent, RC sends two reminders to C and then takes an offline
action.

In order to validate our methodology, we implemented the
above case study and monitored several runtime execution
steps for the service. To provide an indication of the num-
ber of variables the toolkit can monitor at the same time we
scaled the example described above by parametrising the
number of cars in the contract. The experiments show the
approach can monitor effectively several hundreds of vari-
ables. This is sufficient for very complex monitoring of key
aspects of a service. We did not optimise the monitoring
process in any way; we expect our results to improve sig-
nificantly by tailoring the approach to a particular problem
we wish to monitor. Indeed, observe that the methodology
above could be made parallel over several engines on top of
the web service with each engine monitoring different inde-
pendent contracts or clauses in a contract.

3. CONCLUSIONS
In this short paper we presented a symbolic approach

based on timed automata for the runtime monitoring of
contract regulated agent based WS. Several previous efforts
have investigated various formalisms and frameworks for the
monitoring of functional and non-functional properties of
services. Our approach is different from explicit approaches
in that state histories and pending contracts are not stored in
memory during the monitoring. This positively impacts the
scalability of the approach and is particularly useful when
monitoring multiple and long running contracts between sev-
eral services. As a case study we presented the monitoring
of contracts for a repair company. Although the TADD for
the service is not large enough to exploit the full capabil-
ities of RMCS, we believe it is still sufficiently significant
to demonstrate the methodology and scope of the proposed
approach. Experiments demonstrate larger scenarios would
be handled just as well by the technique.

While verification is still an aspect of systems validation
we are not aware of symbolic attempts to the runtime mon-
itoring of these notions. It seems to us that it may be of in-
terest to investigate whether this could be achieved in ways
related to the technique presented here.

Acknowledgements. The third and the fourth authors
acknowledge partial support from the Polish project ITSOA.

4. REFERENCES
[1] R. Alur. Timed Automata. In Proc. of CAV’99, LNCS

1633, pages 8–22. Springer-Verlag, 1999.

[2] P. Dembiński, A. Janowska, P. Janowski, W. Penczek,
A. Pólrola, M. Szreter, B. Woźna, and A. Zbrzezny.
VerICS: A tool for verifying Timed Automata and
Estelle specifications. In Proc. of TACAS’03, LNCS
2619, pages 278–283, Springer-Verlag, 2003.

[3] A. Keller and H. Ludwig. The WSLA Framework:
Specifying and Monitoring Service Level Agreements
for Web Services. J. Netw. Syst. Manage., 2003.

[4] P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin of
the European Association for Theoretical Computer
Science, 70:40–44, 2000.

[5] A. Zbrzezny and A. Pó lrola. SAT-based reachability
checking for timed automata with discrete data.
Fundamenta Informaticae, 79(3-4):579–593, 2007.


