
A BDD-based BMC Approach for the
Verification of Multi-Agent Systems

Andrew V. Jones and Alessio Lomuscio

Department of Computing
Imperial College London

London, UK
{andrew.jones05,a.lomuscio}@imperial.ac.uk

Abstract. We present a technique combining binary decision diagrams
and bounded model checking for the verification of a temporal epistemic
logic; a method for distributing the bounded verification process is also
discussed. We include implementation details of these proposed approaches
as an extension to MCMAS, a BDD-based model checker for multi-agent
systems. The “Train Gate Controller” scenario is adapted to display faults
and is used to provide a comparison with the original implementation.
When variable reordering in the underlying library is disabled the serial
bounded technique is shown to be effective; for satisfiable formulae the
overhead imposed is negligible. The initial results for our distributed
technique demonstrate that it out-performs the sequential approach
for falsifiable formulae. Experimental data indicates that increasing the
number of hosts improves verification efficiency.

1 Introduction

Multi-agent systems (MAS) are distributed systems in which agents, representing
processes, exhibit autonomous behaviour. Recent research into the verification of
multi-agent systems, using temporal epistemic logics, has highlighted their use in
ensuring the correct functionality of various protocols, such as those dealing with
authentication and security.

Symbolic model checking [14] is a powerful technique for the verification
of reactive systems. Traditionally, such approaches use reduced ordered binary
decision diagrams (ROBDDs) to represent the model. These, however, suffer
adversely from the state space explosion problem.

Bounded model checking (BMC) [2] attempts to alleviate this difficulty by
considering only a truncated model up to a specific depth. Most approaches to
bounded model checking look at the possible falsification of a universally quantified
formula, via a translation of the model and the negation of the property, to the
Boolean satisfiability problem (SAT). BMC for MAS, via a translation to SAT,
has been investigated in [15]; an experimental implementation is presented in [12].

Performing bounded model checking using BDDs rather than SAT has been
investigated previously; a method was originally presented by Copty et al. [6]
and later extended by Cabodi et al. [3]. The main aim of these investigations

mailto:andrew.jones05@imperial.ac.uk
mailto:a.lomuscio@imperial.ac.uk

was to determine if the benefits gained from performing BMC were due to the
“underlying technology” used for model checking – BDDs vs. SAT – or whether
the gains derived from the method of model checking – bounded vs. unbounded.
Crucially, their approaches focused only on invariant properties in LTL – a limited
subset of those expressible. Their relatively simplistic method attempted to falsify
a property through a reachability check of a target error set, representing the
complement of that property. Cabodi’s later work discussed the idea of performing
the procedure in reverse, working backwards from the error set using the state
pre-image function.

The model checker NuSMV [4] attempts to provide a method for “early falsifi-
cation”, again of only invariant properties. The approach taken by this verifier
is to check, at each successive depth, if the reachable states are a subset of the
states in which the property holds.

Both of these approaches place a severe limitation upon the various properties
that can be checked. It should be immediately obvious that the full grammar
of expressible properties in a temporal-epistemic logic cannot be expressed by
simply providing the model checker with a single state and then attempting a
reachability check. Restriction to simple invariant properties exhibits the same
issues.

In this paper we present a method of bounded model checking for the exis-
tential fragment of the epistemic logic CTLK [15], grounded in the interpreted
systems formulation of multi-agent systems [7] (Section 2.1). Our approach uses
ROBDDs to represent reachable state space [8,14], rather than a translation of
the problem to SAT (Section 3). Unlike previous attempts, our method supports
the full grammar of the existential fragment, rather than merely the invariant
properties. We show that this is not only flexible, but can also be easily extended
to support agent verification in a distributed environment (Section 3.2). An
implementation of such techniques into an existing model checker for multi-agent
systems, MCMAS (Section 2.2), is presented, as well as the provision of a scalable
scenario (Section 4.1), which allows for a constructive evaluation of our methods
when compared with the existing implementation (Section 4.2).

Related Work In addition to the work discussed above, Iyer et al. [9] propose
a grid-based method for bounded model checking by finding various “candidate
deep reachable states”, which can be used as seeds from which to run parallel
SAT solvers. They argue that, when starting SAT-based BMC at a deeper initial
state, it is possible to explore further into the model, as well as locate errors
that may not be locatable by existing methods. Their method uses partitioned
ROBDDs and under-approximation to construct a partitioned state space, such
that generating the seeds remains tractable, but this is achieved at the expense of
completeness [10]. Seed states are written as conjunctive normal form clauses at
regular intervals and are subsequently used to start multiple parallel SAT-based
BMC instances.

2 Preliminaries

2.1 Temporal Epistemic Interpreted Systems

The “Interpreted Systems” formalism [7] allows for the definition of and reasoning
about the behaviours exhibited by a multi-agent system.

Assume that A = {1, . . . , n} represents the set of n agents in the system, as
well as the existence of a special agent, the environment, e, that models where
all of the agents “live”.

Each agent, i ∈ A, has a set of local states, Li, and a repertoire of actions,
Acti, which it can perform. The protocol function, Pi : Li → 2Acti , governs which
actions can be performed by an agent in a given local state (this definition allows
for non-determinism). Similarly, assume that the environment is modelled in the
same way (i.e. the existence of Le, Acte and Pe, with the same meaning).

The set of joint actions, Act ⊆ Act1 × · · · ×Actn ×Acte, represents actions
that are performed “jointly” (i.e. synchronously - all agents and the environment
perform their respective action at the same time). Upon this, the environment
and each agent has an evolution function, τi : Li ×Act→ Li, specifying how an
agent evolves from one state to another, depending on the joint action performed
by the system as a whole (τe respectively for the environment).

The set of all possible global states, G, can be represented as the Cartesian
product of the local states for all agents in the system G ⊆ L1× · · · ×Ln×Le. A
tuple, (l1, . . . , ln, le) ∈ G, represents an instantaneous configuration of the system.
The function, li : G→ Li, is a projection of an individual agent’s local state from
a given global state.

The epistemic accessibility relation, ∼i ⊆ G×G, represents that two global
states are indistinguishable for that agent. Formally, (g, g′) ∈ ∼i iff li(g) = li(g′).

The set of joint actions can be used to define a transition relation, T ⊆
G×Act×G. Two global states g and g′, (g, g′) ∈ T iff there exists a joint action
a1, . . . , an such that for all i ∈ A, ai ∈ Pi(li(g)) and τi(li(g), a1, . . . , an) = li(g′).

Given an initial state, ι ∈ G, the protocols for each agent, and the global
transition function, generate a (potentially infinite) structure representing all
of the possible computations of the system. A path π = (ι, g1, . . .) is an infinite
sequence of global states, such that ∀k≥0 (gk, gk+1) ∈ T (for finite paths, k is
bounded accordingly). π(k) is the kth global state of the path π, whilst Π(g) is
the set of all paths starting at the given state (g ∈ G).

A model of an interpreted system, MIS , is a tuple (G, ι,T,∼1, . . . ,∼n,V),
where G is the set of reachable states accessible from ι via T, and V is a mapping
of global states to the propositional variables that hold at that state V : G→ 2PV .

The models of interpreted systems can be used to reason about a branching
time temporal epistemic logic. The logic CTLK [15] is an enrichment of Compu-
tational Tree Logic (CTL) [8], with modalities for knowledge, although we only
consider one here. The language CTLK is defined in terms of a countable set of
propositional variables PV = {p, q, . . .}, i ∈ A and using the following syntax:

ϕ,ψ ::= p ∈ PV | ¬ϕ | ϕ ∨ ψ | EXϕ | EGϕ | E [ϕUψ] | Kiϕ

The epistemic modality Kiϕ is read as “agent i considers it possible that ϕ”.
We define EFϕ as E [trueUϕ], to mean “there exists a path upon which ϕ is
eventually true”. The duals are as follows: AXϕ def= ¬EX¬ϕ, AFϕ def= ¬EG¬ϕ
and AGϕ

def= ¬EF¬ϕ. A [ϕUψ] has the obvious semantics. The dual of the
epistemic modality for “possibility” is “knowledge”; Kiϕ is defined as ¬Ki¬ϕ,
and is read as “agent i knows ϕ”.

We can define two fragments of CTLK: an existential fragment, ECTLK, and
a universal fragment, ACTLK. ECTLK places a restriction upon the syntax such
that negation can only be applied to elements of PV (i.e., in the BNF above, ¬ϕ
is replaced with ¬p). The universal fragment contains the negations of all the
formulae in ECTLK (i.e. ACTLK = {¬ϕ | ϕ ∈ ECTLK}). We can easily see that
ACTLK contains formulae of the kind AXϕ, AFϕ, AGϕ A [ϕUψ] and Kiϕ.

Given a model of an interpreted systemMIS , a global state g, and two CTLK
formulae ϕ and ψ, the semantics of CTLK are defined inductively as follows
(MIS has been omitted for brevity):

g � p iff p ∈ V(g)
g � ¬ϕ iff g 2 ϕ
g � ϕ ∨ ψ iff (g � ϕ) or (g � ψ)
g � ϕ ∧ ψ iff (g � ϕ) and (g � ψ)
g � EXϕ iff (∃π = Π(g)) π(1) � ϕ
g � EGϕ iff (∃π = Π(g)) ∀m≥0 π(m) � ϕ
g � E [ϕUψ] iff (∃π = Π(g)) ∃m≥0 [π(m) � ψ and ∀0≥j>m π(j) � ϕ]
g � Kiϕ iff ∃g′ ∈ G, g ∼i g

′ and g′ � ϕ

A CTLK formula ϕ is valid in a model MIS = (G, ι,T,∼1, . . . ,∼n, V) iff
MIS , ι � ϕ, i.e. ϕ is true in the initial state of a model.

2.2 MCMAS – A Model Checker for Multi-Agent Systems

MCMAS [13] is an existing symbolic model checker for multi-agent systems. It
implements ordered binary decision diagram-based algorithms for the verification
of temporal epistemic formulae on interpreted systems. It is written in C++ and
uses the CUDD library, which provides BDD data structures, asynchronous
variable reorderings and garbage collection.

MCMAS implements the standard fixed point methods [8] in the algorithm
Satctlk [16]. This calculates the satisfiability set of states, JϕK, i.e. the set of
reachable states in which ϕ holds. MCMAS’s algorithm Satk symbolically calculates
the satisfiability set for formulae of the kind Kiϕ.

To check the validity of a formula ϕ, MCMAS constructs (and checks the
satisfiability of) the formula ι→ ϕ, where ι represents a propositional atom that
holds only in the initial states of the model. If Jι→ ϕK is equivalent to reachable
states, then it is possible to deduce that the formula ϕ holds at the initial states
of the model and is valid.

3 BDD-based BMC

Our method, as outlined in Algorithm 1, directly extends the algorithms presented
in [16]. It attempts to perform falsification of an ACTLK property (line 4) at
every depth of incremental state space generation (line 7).

Algorithm 1 BDD-BMC(ψ : ACTLK Formula, I : Initial State, Trans :
Transition Relation) : Boolean

1: ϕ← ¬ψ {ϕ : ECLTK Formula}
2: Reach← I {Reach : BDD}
3: while True do
4: if Jι→ ϕK = Reach then
5: return False {Counterexample to ACTLK formula found}
6: end if
7: Reach← Reach ∨ (Reach ∧ Trans)
8: if Reach Unchanged then
9: break {Fixed point reached}

10: end if
11: end while
12: return Jι→ ψK = Reach

Conceptually, whilst similar to the approaches of both Cabodi and Copty
([3] and [6], respectively), ours differs significantly in one major way. Both of the
original BDD-based BMC methods merely performed a set intersection between
either the reach set or the frontier set of states, with a target error state. In
comparison, the algorithm we set forward here performs a full satisfiability check
on the current reachable state space at a specific BMC depth.

The algorithm presented has two “exit” points: lines 5 and 12. The first of
these is the case that the algorithm has found a counterexample to ψ. As soon
as we find the counterexample to the ACTLK formula we are able to terminate
the algorithm and cease further construction of the reachable state space. The
second exit point (line 12) is only accessible via a break in the loop (line 9), the
condition for which is reaching a fixed point in the state space, i.e. the set of
next states generated is the same as the previous set of next states.

In the implementation we restrict MCMAS to only allow for the verification of
properties specified in ACTLK when performing bounded model checking. Once
the model has been parsed, we construct a vector of pairs of modal formulae,
the first being the ACTLK formulae and the second being the negation of the
first in ECTLK. We implemented the method check_formulae_BMC, which is
called at every depth of state space exploration. The method loops over the
vector of modal formula, and removes ones for which the ECTLK formula can
be satisfied (i.e. a counterexample of the ACTLK property can be found). State
space generation only continues to a deeper depth if there still exist formulae to
be verified (i.e. the vector is not empty).

3.1 A Symbolic Method for Epistemic Possibility

Although one requirement of Kripke models is that the transition relation should
be serial, the current fixed point methods for CTL (see [8]) are correct even when
using non-serial transition relations. Currently, MCMAS only supports the “box”
modality Kiϕ. To be able to calculate the satisfiability set (JϕK) for the entire
grammar of ECTLK formulae we require an extension of MCMAS to provide a
symbolic method for Kiϕ. One approach could be to use the dual of Ki and the
existing Satk method [16], although this would be inefficient. We extend the
original algorithm Satctlk with our method for symbolic calculation of Kiϕ, as
can be seen in Algorithm 2. We refer to this extension as Satctlk.

Algorithm 2 Satk(ϕ : Formula, i : Agent) : set of State

1: X← Satctlk(ϕ)
2: Y← prek(X, i)
3: return Y

The function prek returns the set of all states that are epistemically accessible
for the given agent i; that is, the set of all global states in which the local state
of agent i is invariant. We can easily see that the algorithm is correct, given the
obvious parallels to Satex (see [8]).

To create a BDD representing the local state for a given agent, we construct
a “cube” consisting of the local states of every other agent, through the conjunc-
tion of the variables describing that agent’s local state. The CUDD function
ExistAbstract1 is then used to existentially quantify this cube from the BDD
representing JϕK. The resulting BDD is one that represents only the local state
for the agent whose knowledge we wish to check. This can then be used to identify
the global states for which the local state is invariant from the global states in
which ϕ holds.

3.2 Distributed BDD-based BMC

We take inspiration from the work of Iyer et al. [9,10] to develop an extension to
MCMAS and a Java framework to support distributed bounded model checking. In
a similar way to both of the original BDD-based BMC approaches, we focus only
on invariant properties – those that have AG as the top most connective in the
parse tree. Our algorithm works in three main stages:

1. Fixed-Depth BDD-based BMC. Initially, our original algorithm is used to
perform bounded model checking up to a fixed depth.

2. Seed State Generation. If the ACTLK property is not falsifiable up to the
fixed depth, then every state, termed a “seed”, on the fringe of the current
set of reachable states set is saved to the file using the DDDMP package2.

1 See http://www.ece.cmu.edu/~ee760/760docs/cuddv1.pdf
2 http://fmgroup.polito.it/quer/research/tool/tool.htm

http://www.ece.cmu.edu/~ee760/760docs/cuddv1.pdf
http://fmgroup.polito.it/quer/research/tool/tool.htm

3. Distributed Parallel BDD-based BMC. Finally, concurrent MCMAS BMC in-
stances are started on different hosts for each of these seed states.

The Java framework has two types of instance: “Master” and “Slave”. “Master”
represents the initial instance that performs fixed-depth BMC, after which this
instance becomes a “co-ordination” node. “Slave” instances are those that perform
full BMC (until a counterexample is found or a fixed point is reached) from a
given seed state.

When a slave instance returns false, the master instance terminates the
verification on all other slave instances; alternatively, when a slave returns true,
it is allocated another seed. This process continues until all seeds have been
exhausted or a counterexample is found.

Correctness of Distributed Bounded Model Checking For invariant
temporal-epistemic formulae the approach of partial state space evaluation used
in our method of distributed bounded model checking is sound. For invariant
temporal-only formulae the method is also complete.

Proposition 1. Seeded bounded model checking is sound with respect to the full
model when a counterexample for AG(ϕ) is found from an individual seed state.

Proof. Through the construction of the seed states, every seed state is reachable
from the initial state in the model. Finding a counterexample from this seed
state means that there exists a path from that state to another in which ϕ does
not hold (i.e. EF (¬ϕ) holds in the seed state). As such, there exists a path in
the full model that starts at the initial state, passes through the seed state and
reaches the error state. Therefore, from the semantics of CTLK, we also have
EF (¬ϕ) in the initial state.

Proposition 2. Seeded bounded model checking is complete for temporal formu-
lae with respect to the full model when a counterexample for AG(ϕ) cannot be
found from any seed state.

Proof. If the truncated model up to the depth at which the seed states were
generated could not satisfy EF (¬ϕ), and neither could any of the partial state
spaces starting from each individual seed, this means that there does not exist a
reachable state in which ϕ does not hold. As such, from the semantics of CTL,
we do not have a path in any part of the model that satisfies EF (¬ϕ), so AG(ϕ)
is valid in the model.

4 Evaluation

4.1 A Scalable Multi-Agent System

To allow us to investigate effectively the efficiency of our BMC implementation
we require a scalable model. We have adapted the scenario of the “Train Gate

Controller”, as presented by Alur et al. [1] and modified by Wooldridge et al. [17]
and Kacprzak et al. [11].

The model involves two circular train tracks, each with a train travelling in a
different direction. At a particular part of the track the trains must pass through
a tunnel that can only accommodate a single train. At the point at which the
tracks merge there exists a controller, which controls signals for entry to the
tunnel. If a train sees a green light it knows it is safe to enter the tunnel.

The local states for each agent, as per the interpreted systems semantics,
can be defined as follows: LTrain1 = LTrain2 = {Away,Wait, Tunnel} and
LController = {Red,Green}. The protocol is omitted as it can easily be inferred.

Our interpretation of the model is unique in that we adapt the trains to
display faults under certain circumstances. Using MCMAS’s bounded integer type
we extend each train with a “service counter” (with a maximum value) and a
“breaking depth”. The service counter is incremented every time a train performs
an action; when this counter reaches the maximum value then the train is serviced,
resetting the counter to zero. Once the service counter exceeds the breaking depth,
the trains may perform a non-deterministic break action whilst in the tunnel.
The controller is also changed, such that it waits two evolutions between entering
the Red state and changing back to the Green state.

We have defined 3 types of trains: the first, once the break action has been
performed, is in the tunnel perpetually; when the second type performs a break
action it simply delays the train leaving for that turn (but the train can perform
an infinite number of breaks); the final, working, type has all of the break actions
removed.

The specifications in Table 1 are falsifiable in a model containing type-1 or
type-2 trains, but are satisfiable in one with type-3 (working) trains. The formulae
have been given with respect to a model containing two trains, but they can
easily be adapted to refer to more trains in a larger model.

Table 1. Train Gate Controller Properties

ϕtgc1 AG (AF (¬Train1 in tunnel))
ϕtgc2 AG (¬Train1 in tunnel ∨ ¬Train2 in tunnel)
ϕtgc3 AG (Train1 in tunnel→ KTrain1 (¬Train2 in tunnel))
ϕtgc4 AG (KTrain1 (¬Train1 in tunnel ∨ ¬Train2 in tunnel))
ϕtgc5 AG (Train1 in tunnel→ KTrain1 (AX (¬Train2 in tunnel)))

We define the propositional atom “Traini in tunnel” (i ∈ 1, 2) to hold iff train
i is currently inside the tunnel (i.e. the local state for that train is Tunnel).

The first formula states that Train1 is infinitely often not in the tunnel.
The second formula expresses a mutual exclusion property in the model: two
trains never occupy the tunnel at the same time. The next specification, ϕtgc3,
represents that, whenever a train is in the tunnel, it knows that the other train is
not. The next expression represents that trains are aware that they have exclusive
access to the tunnel. The final property indicates that trains are aware that there
is a gap of at least one transition between the first train leaving and the next
entering.

The formulae in Table 1 can be parameterised in a similar way to the those
presented by Kacprzak et al. [11]. For example, for a system composed of N
trains, the property ϕtgc3 can be parameterised as follows:

AG

(
Train1 in tunnel→ KTrain1

(
N∧

i=2

¬Traini in tunnel

))
This takes the intuitive meaning of: “when a train is in the tunnel, it knows that
no other train in the whole system is in the tunnel”.

4.2 Results

The machines used for the following evaluation were dual core PCs, each with
4 GiB of memory and an Intel Core 2 Duo clocked at 3.00 GHz, with a 4096
KiB cache. The machines ran 32-bit Ubuntu Linux 8.04.2, with a vanilla 2.6.24-
19-generic kernel and glibc 2.7. MCMAS was branched from version 0.9.7.1 and
linked against release 2.4.1 of the CUDD library and version 2.0.3 of the DDDMP
package. The seed states were saved to the networked file system mounted on
a server with a 813 GiB XFS file system, using a 4 KiB block size (in a RAID
configuration). The network between the machines and the file server ran at 1
Gb/s. All experiments were performed four times, with the results presented here
being the average across all four runs.

Benchmarks To provide fair benchmarks, we turned off CUDD’s asynchronous
variable reordering and garbage collection. Our justification for disabling these fea-
tures is that we wished to evaluate our novel approach, rather than benchmarking
a specific implementation.

For instance, if CUDD were to perform asynchronous reorderings more fre-
quently during state space generation, this could cause a sub-optimal variable
reordering to be selected. Such an ordering could be preferential for the current
reach set, but might be an adverse ordering for the reach set generated in the next
state space generation iteration; CUDD only allows a certain time per-attempt to
find an optimal reordering and, if one is not found, does not change the ordering.

We wanted to avoid assessing the benefits that such an implementation gains
from the optimisations (such as automatic variable reorderings) arising from its
use of an auxiliary library.

The memory requirement of bounded model checking, with respect to the
original technique, is shown in Figure 1, whilst Figure 2 shows the same require-
ment for time. Both figures illustrate results for various complexities of formulae,
whilst the breaking threshold of the train is directly proportional to the BMC
depth (iterations of Algorithm 1) required to falsify the formulae. This depth
affects the number of reachable states and the size of the BDD representing them.

In Figure 1 we can see that there is a marginal overhead when checking ϕtgc5

at a deep breaking depth, but this overhead appears to be less in the working
model. The cause of this is that the number of state space generation iterations
required to find a counterexample at the deepest breaking bound is greater than
that for reaching a fixed point in the working model.

Fig. 1. Memory required to verify vari-
ous formulae.

0%

20%

40%

60%

80%

100%

120%

140%

4 8 12 16 working

%
o
f

M
em

o
ry

U
se

d

Breaking Threshold of Train

Bounded Model Checking Memory Usage

ϕtgc1

ϕtgc2

ϕtgc3(2)
ϕtgc5(2)

100%

Fig. 2. Time used to verify various for-
mulae.

0%

20%

40%

60%

80%

100%

120%

140%

4 8 12 16 working

%
o
f

T
im

e
R

eq
u
ir

ed

Breaking Threshold of Train

Bounded Model Checking Time Usage

ϕtgc1

ϕtgc2

ϕtgc3(2)
ϕtgc5(2)

100%

Counterexamples The approach adopted by traditional SAT-based BMC“finds
counterexamples of minimal length” [2]. A comparison of the length of coun-
terexamples generated between MCMAS’s BMC implementation and the original
implementation can be seen in Table 2. These counterexamples were generated
for various properties in a model with two type-2 trains, a maximum counter
value of 20 and a breaking depth of 10.

For the first property we can see that, although the new approach generates
a shorter counterexample, it is still not minimal. Length 10—the lowest number
of joint actions that must occur before the train can perform a break action—is
the shortest. MCMAS follows the procedures for counterexample generation as laid
out in [5]. Our results demonstrate that these procedures can be suboptimal.

When attempting to generate a counterexample for ϕtgc5, CUDD printed
the string Unexpected Error and caused MCMAS to exit with a non-zero error
code. We were able to make MCMAS generate a counterexample for this property
when performing BMC, but this required manual intervention to cause MCMAS to
explore the model to a deeper depth than required to falsify the property alone.

Table 2. Length of counterexamples generated by BMC and full verification.

Formula
Method ϕtgc1 ϕtgc2 ϕtgc3 ϕtgc4 ϕtgc5

Regular 25 17 4 4 12
BMC 13 16 4 4 fail

4.3 Evaluating Distributed Bounded Model Checking

Table 3 shows the possible decreases available when performing distributed
bounded model checking on a model with 3 trains, a maximum service counter
of 7 and a breaking depth of 4. The table displays ratios comparing resource
utilisation of seeded BMC and BMC – a value greater (less) than 1 indicates
a decrease (increase). Given our method is only complete with respect to the

temporal fragment, falsification of the parameterised version of ϕtgc3, replacing
KTrain1 with AX, was attempted. The initial fixed-depth BMC was performed
to a depth of 4. We can see that, when the property can be falsified, only having
to explore a partial state space is greatly favourable. Otherwise, significant
over-computation is required to explore each seed to its respective fixed point.

Focusing on the model above, in which falsification is not possible, Table 4
shows us that increasing the number of slave instances causes a decrease in the
time required for the verification process. Unlike the previous results, the initial
fixed-depth BMC was only performed to a depth of 3.

Table 3. A comparison of seeded
BMC vs. BMC for a single master and
3 slaves (seed depth of 4).

Ratio
Model Memory Time States

Faulty 1.8255 3.8130 1.7297
Working 0.9500 0.0013 0.0008

Table 4. Ratios comparing time for
seeded BMC vs. BMC, for a varying
number of slaves (seed depth of 3).

Hosts Ratio

2 0.0033
4 0.0066
6 0.0098
8 0.0131

5 Conclusion

In this paper we have presented a method for performing bounded model checking
using binary decision diagrams, as opposed to the conventional approach of a
conversion of the problem to the Boolean satisfiability problem. Experiments
looking at reasoning about a faulty train gate controller model show bounded
model checking to be the preferential approach when automatic variable reordering
is disabled. This work shows that the adaptation of existing BDD-based model
checkers to perform bounded model checking, without significant re-engineering
to support SAT, can be fruitful. Not all symbolic model checkers use libraries that
provide automatic reordering but, for the ones that do, further research needs to
be undertaken to find optimal heuristics to use when performing bounded model
checking.

Our future work aims to compare the implementation presented here with the
existing SAT-based bounded model checker for multi-agent systems, VerICS [12].
We propose to extend our symbolic method for the modality Kiϕ to support
the operators D and C, representing the dual of distributed and common knowl-
edge, respectively. Our method for distributing the verification process is not
complete for the temporal-epistemic fragment, due to the possible occurrence
of epistemically-related states in the temporal past. Therefore, we intend to
investigate how our process might be further extended to allow for completeness
of epistemic formulae.

References

1. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran.
MOCHA: User Manual. In cMocha (Version 1.0.1) Documentation.

2. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 1579/1999 of Lecture Notes in Computer Science, pages 193–207. Springer
Berlin / Heidelberg, 1999.

3. G. Cabodi, P. Camurati, and S. Quer. Can BDDs compete with SAT solvers on
bounded model checking? In DAC ’02: Proceedings of the 39th conference on Design
automation, pages 117–122, New York, NY, USA, 2002. ACM.

4. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource tool for symbolic
model checking. In Computer Aided Verification, volume 2404 of Lecture Notes in
Computer Science, pages 241–268. Springer Berlin / Heidelberg, 2002.

5. E. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-like counterexamples in model checking.
Logic in Computer Science, 0:19, 2002.

6. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y.
Vardi. Benefits of Bounded Model Checking at an Industrial Setting. In Computer
Aided Verification, volume 2102/2001 of Lecture Notes in Computer Science, pages
436–453. Springer Berlin / Heidelberg, 2001.

7. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

8. M. Huth and M. Ryan. Logic in Computer Science: modelling and reasoning about
systems (second edition). Cambridge University Press, 2004.

9. S. Iyer, J. Jain, D. Sahoo, and E. A. Emerson. Under-approximation heuristics
for grid-based bounded model checking. Electronic Notes in Theoretical Computer
Science, 135(2):31 – 46, 2006. Proceedings of the 4th International Workshop on
Parallel and Distributed Methods in Verification (PDMC 2005).

10. S. K. Iyer, J. Jain, M. R. Prasad, D. Sahoo, and T. Sidle. Error detection using BMC
in a parallel environment. In Correct Hardware Design and Verification Methods,
volume 3725 of Lecture Notes in Computer Science, pages 354–358. Springer Berlin
/ Heidelberg, 2005.

11. M. Kacprzak, A. Lomuscio, T. Lasica, W. Penczek, and M. Szreter. Verifying
Multi-agent Systems via Unbounded Model Checking. In Formal Approaches to
Agent-Based Systems, volume 3228 of Lecture Notes in Computer Science, pages
189–212. Springer Berlin / Heidelberg, 2005.

12. M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, M. Szreter,
B. Wozna, and A. Zbrzezny. Verics 2007 - a model checker for knowledge and
real-time. Fundam. Inform., 85(1-4):313–328, 2008.

13. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A Model Checker for the
Verification of Multi-Agent Systems. In CAV, pages 682–688, 2009.

14. K. L. McMillan. Symbolic model checking: an approach to the state explosion
problem. PhD thesis, Pittsburgh, PA, USA, 1992.

15. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundam. Inf., 55(2):167–185, 2002.

16. F. Raimondi and A. Lomuscio. Towards symbolic model checking for multi-agent
systems via obdds. In Formal Approaches to Agent-Based Systems, volume 3228 of
Lecture Notes in Computer Science, pages 213–221. Springer Berlin / Heidelberg,
2005.

17. W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic
goals. In AAMAS ’02: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, pages 1167–1174, New York, NY, USA,
2002. ACM.

	A BDD-based BMC Approach for the Verification of Multi-Agent Systems
	Andrew V. Jones, Alessio Lomuscio

