
Quantified Epistemic Logics
with Flexible Terms
F. Belardinelli, A. Lomuscio

Keywords: Knowledge representation and Logic: knowledge represen-
tation - Mathematical Logic: modal logic

abstract. We present a family of quantified epistemic logics for
reasoning about knowledge in multi-agent systems. The language en-
joys flexible terms with different denotations depending on the epis-
temic context in which they are interpreted. We present syntax and
semantics of the language formally and show completeness of an ax-
iomatisation. We discuss the expressive features of the language by
means of an example.

1 Introduction

Propositional modal languages have been extensively used to reason about
attitudes of multi-agent systems (MAS)1. In particular, a successful field of
investigation in Artificial Intelligence and philosophy is the one of epistemic
logic [3, 12, 13]. Several frameworks have been explored to reason about
various notions of knowledge (implicit, explicit, algorithmic, etc.) either in
isolation or in combination with time (discrete or dense, branching or linear,
etc.). A wealth of results covering axiomatisability, decidability and compu-
tational complexity of various underlying semantical classes (synchronous,
no-learning, perfect recall systems) have been made available, as well as
model checking techniques for automatic verification [5, 14, 15]. However,
little attention has so far been devoted to the extensions to first-order. Al-
though quantified modal logic is ridden with technical difficulties, the power
of full quantification is necessary if we wish to represent properties of indi-
viduals and relationships between objects and agents (as in “Robot a knows
that all wheels of all other robots but b are faulty”). In addition, it is known
that first-order modal logic allows for additional expressivity, including be-
ing able to distinguish between de re and de dicto knowledge. A major

1The research described in this paper is partly supported by the European Commission
Framework 6 funded project CONTRACT (IST Project Number 034418).
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technical challenge in using first-order modal languages for modelling MAS
is axiomatisability, as many first-order modal logics are not axiomatisable
[6, 8, 17]. In this paper we aim at extending the current state of the art by
introducing a family of provably complete first-order epistemic logics with
global and local terms. While the denotation of the former is rigid, i.e., it is
the same in every computational state, the latter’s depends on the state in
which these expressions are evaluated. The importance of this distinction
has long been recognized [4, 11], but it is also well-known that local terms
increase the expressive power of first-order modal languages; as a result,
certain frameworks are incomplete [6, 16]. Our first aim is to retain both
local and global terms, without incurring in unaxiomatisability, by suitably
restricting the range of local terms according to the substantial interpre-
tation of quantified modal logic in [6]. Further, in the language presented
below we allow each agent to reason about a possibly different set of objects.
This choice is motivated by the fact that, as agents are autonomous, they
may be aware of only a subset of all the existing individuals, possibly differ-
ent from those of the other agents. In what follows we show how to define
systems of global states fulfilling both features above. Then, we present a
first-order epistemic language describing these structures and a sound and
complete axiomatisation.

2 Systems of Global States and Equivalence Frames

In this section we present systems of global states [3, 7] and Kripke frames
[1, 2]. We adopt the “static” perspective on the systems of global states [9],
rather than their “dynamic” version [3]. Altough the evolution of knowledge
over time is worth studying, for simplicity we do not consider transitions
explicitly. We assume a set of agents A = {1, . . . , n} and for i ∈ A, a set Li

of local states li, l′i, . . ., and a set Le of environment’s local states le, l′e, . . ..

DEFINITION 1 (SGS). A system of global states is a 5-ple S = 〈S,D,
{Di}i∈A, F, {Fi}i∈A〉 such that S ⊆ Le × L1 × . . .× Ln is a non-empty set
of global states; D is a non-empty set of individuals and for i ∈ A, Di is a
possibly empty subset of D; F is a non-empty set of functions from S to D
and for i ∈ A, Fi : S → D is a possibly empty subset of F . SGS is the class
of the systems of global states.

Remarks: This definition fulfils both features referred to in the intro-
duction. Intuitively, we can assign a fixed meaning to global terms like “π”
by including the corresponding real number in the domain D of individuals.
Expressions like “the tallest man in the world” will instead be modelled by
a function f ∈ F , which returns the tallest man in a particular situation.
As to the second feature, we have possibly different domains Di and Fi, for
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each agent i ∈ A. Note that the various Di and Fi are independent from
global states. Although this assumption is consistent with the external ac-
count of knowledge, it can be relaxed: just assume that for i ∈ A, s ∈ S,
Di,s is a possibly empty subset of D, and Fi,s ⊆ F is a possibly empty
domain of functions from S to D. Henceforth we refer to these structures
as varying systems of global states. We will show that our results apply to
these structures with minor changes.

In order to study the formal properties of SGSs we introduce a particular
class of Kripke frames.

DEFINITION 2. An equivalence frame is a 6-tuple F = 〈W, {∼i}i∈A, D,
{Di}i∈A, F, {Fi}i∈A〉 such that W is a non-empty set; for i ∈ A, ∼i is an
equivalence relation on W ; D is a non-empty set of individuals and for
i ∈ A, Di is a possibly empty subset of D; F is a non-empty set of functions
from W to D and for i ∈ A, Fi : W → D is a possibly empty subset of F .
The class of all equivalence frames is denoted by FE .

Remarks: It is straightforward to consider varying equivalence frames,
where for i ∈ A, w ∈ W , Di,w and Fi,w are possibly empty subsets of D
and F respectively. Finally, note that the individuals in D of both SGSs
and equivalence frames can be seen as constant functions from S (resp. W )
to D itself. This remark will be useful when interpreting individual terms.

3 Maps between SGS and FE

We explore the relationship between SGSs and equivalence frames through
the maps f : SGS → FE and g : FE → SGS. By the lemma below and
Theorem 16 we will show that the axiomatisation of equivalence frames in
Section 8 is sound and complete also for SGS.

We now show that every equivalence frame F = 〈W, {∼i}i∈A, D, {Di}i∈A, F,
{Fi}i∈A〉 is isomorphic to f(g(F)) = 〈W ′, {∼′i}i∈A, D

′, {D′
i}i∈A, F

′, {F ′i}i∈A〉,
that is, there are bijections between W and W ′, between D and D′, between
F and F ′, between the various Di and D′

i, and between the various Fi and
F ′i . In addition, w ∼i w

′ iff (f ◦ g)(w) ∼′i (f ◦ g)(w′).
We start with the map f . Let S = 〈S,D, {Di}i∈A, F, {Fi}i∈A〉 be an SGS,

define f(S) as 〈S, {∼i}i∈A, D, {Di}i∈A, F, {Fi}i∈A〉 where S, D, {Di}i∈A,
F , and {Fi}i∈A are the same as in S, and for i ∈ A, the relation ∼i on S
such that 〈le, l1, . . . , ln〉 ∼i 〈l′e, l′1, . . . , l′n〉 iff li = l′i is an equivalence relation.
Clearly, f(S) is an equivalence frame.

For the converse map g, let F = 〈W, {∼i}i∈A, D, {Di}i∈A, F, {Fi}i∈A〉
be an equivalence frame. For every equivalence relation ∼i, for w ∈ W ,
let the equivalence class [w]∼i = {w′|w ∼i w

′} be a local state of agent
i; while W is the set of local states for the environment. Let g(F) =
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〈S,D, {Di}i∈A, F
′, {F ′i}i∈A, 〉, where S contains all the n+1-tuples 〈w, [w]∼1 ,

. . . , [w]∼n〉; D and {Di}i∈A are the same as in F , and each F ′i is the set
of functions f ′ such that f ′(〈w, [w]∼1 , . . . , [w]∼n〉) = f(w), for f ∈ Fi. The
structure g(F) is an SGS and the composition of maps is an isomorphism.

LEMMA 3. Every equivalence frame F is isomorphic to f(g(F))

The proof directly extends the propositional case [10], so we omit it.
It is straightforward to extend the maps f , g to cover also varying systems

of global states and equivalence frames: let πi(〈a1, . . . , an〉) = ai, for i ≤ n;
define f as above and g′ as g but D′

i,s = Di,w and F ′i,s = {f ′|f ′(s′) = f(w′),
for f ∈ Fi,w, w

′ = π1(s′)}, whenever π1(s) = w. It is easy to check that
Lemma 3 holds also for the structures with varying domains.

4 Syntax

Our first-order epistemic formulas are defined on an alphabet containing
global variables x1, x2, . . ., local variables z1, z2, . . ., global constants c1, c2, . . .,
and local constants d1, d2, . . .. Moreover, we have n+1-ary function symbols
fn+1
1 , fn+1

2 , . . ., and n-ary predicative constants Pn
1 , P

n
2 , . . ., for n ∈ N, the

identity =, the propositional connectives ¬ and →, the universal quantifier
∀, and for every i ∈ A, the epistemic operator Ki and the unary predica-
tive constant Admi. Terms and formulas in the language Ln are formally
defined as follows:

t ::= x | z | c | d |fk(t1, . . . , tk)
φ ::= P k(t1, . . . , tk) | t = t′ | Admi(t) | ¬φ | φ→ φ′ | Kiφ | ∀xφ | ∀zφ

The symbols ⊥, ∧, ∨, ↔, ∃ are defined standardly, while y, y′, . . . refer to
(local and global) variables in Ln. A global term s is defined as follows:

s ::= x | c | fk(s1, . . . , sk)

otherwise, it is local. The metavariables s, s′, . . . and u, u′, . . . refer to global
and local terms respectively; while v, v′, . . . and r, r′, . . . refer to global and
local closed terms where no variable appears. The sign “s” can represent
either a state or a global term, the context will disambiguate.

By t[~y] (resp. φ[~y]) we mean that ~y = y1, . . . , yn are all the (local and
global) free variables in t (resp. φ); while t[~y/~t] (resp. φ[~y/~t]) denotes
the term (resp. formula) obtained by simultaneously substituting some,
possibly all, free occurrences of y1, . . . , yn in t (resp. φ) with t1, . . . , tn,
renaming bounded variables if necessary. We stress that local variables are
to be substituted by local terms only, while there is no restriction on global
terms.

The indexed quantifiers ∀i, ∃i are defined by restricting the universal and
existential quantifier through the predicate Admi, that is, ∀iyφ and ∃iyφ
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are shorthands for ∀y(Admi(y) → φ) and ∃y(Admi(y) ∧ φ) respectively.
Intuitively, the predicate Admi holds for the admissible individuals for agent
i and the quantifiers ∀i, ∃i range over the individuals considered by i.

We write GV ar, LV ar, GCon and LCon to denote the sets of global and
local variables, and the sets of global and local constants in Ln respectively.

5 Semantics

We interpret Ln on an equivalence frame F by means of an interpretation
I mapping the syntactic features of Ln into the elements of F .

DEFINITION 4. An equivalence model M = 〈F , I〉 is such that:

• for c ∈ GCon and d ∈ LCon, I(c) ∈ D and I(d) ∈ F ;

• I(fk) : F k → F is a k-ary function and I(fk)(~g)(w) = I(fk)(g1(w), . . . , gk(w));

• I(P k, w) ⊆ Dk; I(Admi, w) = Di ∪ Fi; I(=, w) is the equality on D.

The global constants are interpreted rigidly. Instead, it can be the case
that I(d)(w) is different from I(d)(w′), for w 6= w′. Each I(fk) is a function
from F k to F , but if the arguments are constant functions, i.e., elements
in D, then also the output belongs to D. The condition on I(fk) guaran-
tees that it commutes. Finally, Admi is an intensional predicate, i.e., its
interpretation is Di ∪ Fi, not just a subset of D.

Let σ be an assignment, i.e., a function from GV ar to D and from LV ar
to F ; the valuation Iσ(t, w) of a term t at a world w is defined as follows:

Iσ(x,w) = Iσ(x) = σ(x)
Iσ(z, w) = Iσ(z)(w) = σ(z)(w)
Iσ(c, w) = Iσ(c) = I(c)
Iσ(d,w) = Iσ(d)(w) = I(d)(w)
Iσ(fk(t1, . . . , tk), w) = I(fk)(Iσ(t1, w), . . . , Iσ(tk, w)) = I(fk)(Iσ(t1), . . . , Iσ(tk))(w)

A variant σ
(
y
b

)
of an assignment σ assigns b ∈ D ∪ F to y and coincides

with σ on all the other variables.

DEFINITION 5. The satisfaction relation |= for φ ∈ Ln, w ∈ M and an
assignment σ is inductively defined as follows:

(Mσ, w) |= P k(~t) iff 〈Iσ(t1, w), . . . , Iσ(tk, w)〉 ∈ I(P k, w)
(Mσ, w) |= t = t′ iff Iσ(t, w) = Iσ(t′, w)
(Mσ, w) |= Admi(t) iff Iσ(t) ∈ Di ∪ Fi

(Mσ, w) |= ¬ψ iff (Mσ, w) 6|= ψ
(Mσ, w) |= ψ → ψ′ iff (Mσ, w) 6|= ψ or (Mσ, w) |= ψ′

(Mσ, w) |= Kiψ iff for all w ∈W , w ∼i w
′ implies (Mσ, w′) |= ψ
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(Mσ, w) |= ∀xψ iff for all a ∈ D, (Mσ(x
a), w) |= ψ

(Mσ, w) |= ∀zψ iff for all f ∈ F , (Mσ(z
f), w) |= ψ

The truth conditions for the formulas containing the symbols ⊥,∧, ∨, ↔,
∃ are defined from the ones above, and we can check that:

(Mσ, w) |= ∀ixψ iff for all a ∈ Di, (Mσ(x
a), w) |= ψ

(Mσ, w) |= ∀izψ iff for all f ∈ Fi, (Mσ(z
f), w) |= ψ

As we pointed out, the formula Admi(t) means that Iσ(t) is among the indi-
viduals in Di ∪Fi admissible for agent i. If we consider varying equivalence
frames, the definition of satisfaction above is to be modified as follows:

(Mσ, w) |= Admi(t) iff Iσ(t) ∈ Di,w ∪ Fi,w

(Mσ, w) |= ∀ixψ iff for all a ∈ Di,w, (Mσ(x
a), w) |= ψ

(Mσ, w) |= ∀izψ iff for all f ∈ Fi,w, (Mσ(z
f), w) |= ψ

A formula φ ∈ Ln is true at a world w iff it is satisfied at w by every
assignment σ, φ is valid on a model M iff it is true at every world in M,
φ is valid on a frame F iff it is valid on every model on F , φ is valid on a
class C of frames iff it is valid on every frame in C.

Let ∆ be a set of formulas in Ln, M is a model for ∆ iff every formula
in ∆ is valid on M. Further, F is a frame for ∆ iff every model on F is a
model for ∆. We can now introduce the quantified interpreted systems.

DEFINITION 6 (QIS). Given an SGS S, a quantified interpreted systems
is a pair P = 〈S, I〉 such that I is an interpretation of Ln in f(S).

The notions of satisfaction, truth and validity are defined as above, i.e.,
let Pf = 〈f(S), I〉 be the equivalence model associated with the quantified
interpreted system P = 〈S, I〉, then (Pσ, s) |= φ iff (Pσ

f , s) |= φ. A formula
φ ∈ Ln is valid on a quantified interpreted systems P iff φ is valid on Pf .

The definitions above apply to varying systems of global states and equiv-
alence frames as well.

6 Some validities

Since the domains of quantification Di and Fi are independent from global
states, both the Barcan formula and its converse [4] are valid in their in-
dexed form on the class QIS of all QISs, i.e., they hold in every quantified
interpreted system:

QIS |= ∀iyKjφ→ Kj∀iyφ BFi−j

QIS |= Kj∀iyφ→ ∀iyKjφ CBFi−j
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For the same reason we have also

QIS |= Admj(t) → KiAdmj(t) NecAdm
QIS |= ¬Admj(t) → Ki¬Admj(t) Nec¬Adm

These validities say that each agent knows which are the individuals he and
the other agents reason about.

These principles seem rather strong even for an external account of knowl-
edge. After all, we introduced different domains of quantification for ex-
pressing that each agent has only a limited access to the totality of individ-
uals. If they know all other agents’ domains as well as theirs, the whole con-
struction becomes questionable. Given this, we can focus on varying SGSs,
where the formulas above fail. But this undermines the agents’ knowledge of
their own domains. Our solution consists in admitting BFi−j and CBFi−j

only for i = j. In fact, the equivalences below hold on any varying SGS S:

S |= ∀ixKiφ↔ Ki∀ixφ iff li(s) = li(s′) ⇒ Di,s = Di,s′

S |= ∀izKiφ↔ Ki∀izφ iff li(s) = li(s′) ⇒ Fi,s = Fi,s′

By restricting our attention to the SGSs satisfying the conditions above, we
can model the scenario where an agent knows his domains of quantification,
but not necessarily the other agents’. We call these SGSs regular and pro-
vide a sound and complete axiomatisation also for this class of structures.

A varying equivalence frame F is regular iff the corresponding system of
global states g(F) is, i.e., iff

F |= ∀ixKiφ↔ Ki∀ixφ iff w ∼i w
′ ⇒ Di,w = Di,w′

F |= ∀izKiφ↔ Ki∀izφ iff w ∼i w
′ ⇒ Fi,w = Fi,w′

For what concerns identity, the following formulas hold for global terms
on every quantified interpreted system:

QIS |= (s = s′) → (φ[x/s] → φ[x/s′]) Subst
QIS |= (s = s′) → Ki(s = s′) KiId
QIS |= (s 6= s′) → Ki(s 6= s′) KiDif

but not for local terms. These (in)validities justify the names of flexible and
rigid variables given in [11]. For local terms we have only:

QIS |= (u = u′) → (φ[z/u] → φ[z/u′]), for atomic φ

but

QIS 6|= (u = u′) → (Admi(u) → Admi(u′)),

as Admi is an intensional predicate and it can be that Iσ(u,w) = Iσ(u′, w),
Iσ(u) ∈ Fi but Iσ(u′) /∈ Fi.
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7 A case study: Battlefield

In this paragraph we present a MAS modelled as a quantified interpreted
systems, and describe it by means of the language Ln. We start by consid-
ering the set of agents A = {1, 2, 3, 4}, each agent is assigned a quadrant in
Z× Z clockwise:

D4 = {(x, y) | x ∈ Z−, y ∈ Z+} D1 = {(x, y) | x, y ∈ Z+}
D3 = {(x, y) | x, y ∈ Z−} D2 = {(x, y) | x ∈ Z+, y ∈ Z−}

Intuitively, the set Di is the country of agent i. We assume that each
agent has 5 military units, whose positions are recorded in his local state.
Further, we consider couples (x, y) ∈ Di and triples (k, x, y), for 1 ≤ k ≤ 5,
to express that there is a military unit at (x, y) and that the kth military
unit is at (x, y) respectively.

The local state li of agent i is a 4-tuple 〈α1, α2, α3, α4〉 such that:

• αi is a 5-tuple 〈(1, x, y), . . . , (5, x′, y′)〉 with the positions of i’s units.

• for j 6= i, αj is a possibly empty sequence of (k, x, y) and (x, y) record-
ing the positions and identities of i’s enemies’ units.

Finally, le is the local state of the environment recording the positions and
identities of all the units.

The set S contains the global states s = 〈l1, l2, l3, l4, le〉 such that if either
(x, y) ∈ αj(li) or (k, x, y) ∈ αj(li), then (k, x, y) ∈ αi(li). So, an agent may
not know the position or the identity of an enemy unit, but if she does, she
cannot be wrong. Each Fi is the set of functions mui.k, for 1 ≤ k ≤ 5, such
that mui.k(s) = (x, y) iff the expression (k, x, y) appears in αi of li(s).

We assume that our language has global and local constants for denoting
the individuals in the various Di and Fi. We use the same notation for
syntactic and semantic elements as the former mirror the latter, the context
will disambiguate. Finally, D and F contain the real numbers and functions
on them.

Let us suppose that the initial state s = 〈l1, l2, l3, l4, le〉 - describing the
position of the military units at the beginning - is defined as follows:

• l1(s) = 〈〈(1, 2, 2), (2, 6, 5), (3, 2, 7), (4, 4, 12), (5, 7, 9)〉, 〈〉, 〈〉, 〈〉〉
• l2(s) = 〈〈〉, 〈(1, 3,−3), (2, 7,−2), (3, 6,−5), (4, 3,−6), (5, 8,−9)〉, 〈〉, 〈〉〉
• l3(s) = 〈〈〉, 〈〉, 〈(1,−3,−3), (2,−3,−6), (3,−6,−3), (4,−6,−8), (5,−8,−5)〉, 〈〉〉
• l4(s) = 〈〈〉, 〈〉, 〈〉, 〈(1,−4, 4), (2,−3, 9), (3,−7, 7), (4,−5, 12), (5,−8, 11)〉〉

The system of global states containing s describes a situation in which
the first military unit of agent 1 is positioned at (2,2). In particular, agent
1 knows this fact while agent 3 is uncertain about it:
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(P, s) |= K1∃1z(z = (2, 2)) and also (P, s) |= ∃1zK1(z = (2, 2))
(P, s) |= ∃1z¬K3(z = (2, 2)) and also (P, s) |= ∀1z¬K3(z = (2, 2))

Consider now a function dist returning the distance between two points in
Z× Z as a real number: I(dist)((x, y), (x′, y′)) =

√
(x− x′)2 + (y − y′)2.

It is easy to check that agent 2 starts with all his military units within a
distance of less than 8, and he knows this fact, which is ignored by agent 4:

(P, s) |= ∀2z, z
′K2(dist(z, z′) < 8) but (P, s) 6|= ∀2z, z

′K4(dist(z, z′) < 8)

Consider a global constant firedist representing the maximum range of fire
of the military units and set it to 8, i.e. I(firedist) = 8. We can express
the fact that units z, z′ are within fire range by the formula dist(z, z′) <
firedist, that we abbreviate as FDist(z, z′). Further, suppose hostilities
break out in our scenario and agent 3 somehow acquires the knowledge that
an unidentified 1’s military unit is at (2,2). The resulting state s′ differs
from s only for the local state of agent 3:

• l3(s
′) = 〈〈(2, 2)〉, 〈〉, 〈(1,−3,−3), (2,−3,−6), (3,−6,−3), (4,−6,−8), (5,−8,−5)〉, 〈〉〉

As a consequence, agent 3 has de dicto knowledge that the first of his
units is within the range of enemy fire, even if she does not know this de re:

(P, s′) |= ∃3zK3∃1z
′FDist(z, z′) but (P, s′) 6|= ∃1z

′∃3zK3FDist(z, z′)

while agent 1 ignores this fact, let alone that agent 3 knows this:

(P, s′) |= ¬K1∃3zK3∃1z
′FDist(z, z′)

Now suppose that agent 1 discovers unit mu3.1’s position; the change in his
local state is recorded in the global state s′′ differing from s′ as to l1:

• l1(s
′′) = 〈〈(1, 2, 2), (2, 6, 5), (3, 2, 7), (4, 4, 12), (5, 7, 9)〉, 〈〉, 〈(−3,−3)〉, 〈〉〉

Then, also agent 1 knows that one of his units is within the range of
enemy fire, even if she is uncertain whether agent 3 is aware of this:

(P, s′′) |= ∃1zK1∃3z
′FDist(z, z′) but (P, s′′) 6|= ∃1zK1∃3z

′K3FDist(z, z′)

Obviously, when one of agent i’s units is within the enemy fire range, agent
i is in a dangerous situation. Thus, our QIS validates the following de dicto
specification:

∀iz(Ki∃jz
′FireDist(z, z′) → Danger(z)), for j 6= i

which is stronger than this de re specification on danger:

∀iz(∃jz
′KiFireDist(z, z′) → Danger′(z)), for j 6= i

In fact, both agent 1 and agent 3 know to be in Danger, but not in Danger′:
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(P, s′′) |= ∃1zK1Danger(z) but (P, s′′) 6|= ∃1zK1Danger
′(z)

(P, s′′) |= ∃3zK3Danger(z) but (P, s′′) 6|= ∃3zK3Danger
′(z)

They can try to find a way out of this situation either by attacking
or by withdrawing. In order to analyse these alternatives, we introduce a
knowledge based protocol [3]. First of all, we define a predicate Access such
that Access((x, y)(x′, y′)) iff |x − x′| ≤ 1 and |y − y′| ≤ 1. Intuitively, the
set {p′|Access(p, p′)} contains the points recheable from p in a single move.
Moreover, we consider two actions: ATTACK and MOV E. The protocol
for agent i 6= j, k, l can be written in pseudo-code as follows:

if KiDanger(z) then
if ∃ix(Access(z, x) ∧ ∀jz

′∀kz
′′∀lz

′′′Ki(¬FDist(x, z′) ∧ ¬FDist(x, z′′)∧
∧¬FDist(x, z′′′))) then

MOV E(z, x)
else if Ki∃jz

′FireDist(z, z′) then
ATTACK(z′)

This protocol says that if agent i knows that the unit z is in danger, then
he has to move it to an area known to be out of the enemy fire range. If it
is not possible, then he has to attack first the enemy unit threatening his
unit. Note that this protocol is extremely strict, as it requires knowledge of
safety before moving. In the present case

(P, s′′) |= ∃1z(K1Danger(z) ∧ ∀1x(Access(z, x) → K1∃3z
′FDist(x, z′)))

thus agent 1 is bound to attack the first unit of agent 3.
By suitably extending our language, we can express interesting topologi-

cal relationships on the various Di, like the presence of obstacles. Moreover,
we can introduce intensional predicate for describing in detail the character-
istics of the military units. We conclude that our language and structures
are a sound formalism for modelling agents moving units on a grid.

8 System Q.S5n

The system Q.S5n on the language Ln is a first-order multi-modal version
of the propositional system S5. While resolution and natural deduction
systems are more natural when dealing with automated reasoning, for the
purpose of the completeness proof Hilbert-style calculi are easier to handle.
Moreover, a natural deduction version of Q.S5n can be easily obtained from
the system presented in [4] for instance. Hereafter we list the postulates of
Q.S5n, note that ⇒ is the inference relation between formulas.

DEFINITION 7. The system Q.S5n on Ln contains the following schemes
of axioms and inference rules:



Quantified Epistemic Logics with Flexible Terms 11

Taut every classic propositional tautology
Dist Ki(φ→ ψ) → (Kiφ→ Kiψ)
T Kiφ→ φ
4 Kiφ→ KiKiφ
5 ¬Kiφ→ Ki¬Kiφ
MP φ→ ψ, φ⇒ ψ
Nec φ⇒ Kiφ
Ex ∀yφ→ φ[y/t]
Gen φ→ ψ[y/t] ⇒ φ→ ∀yψ, for y not free in φ
BFi−j ∀iyKjφ→ Kj∀iyφ
CBFi−j Kj∀iyφ→ ∀iyKjφ
Id t = t
Func t = t′ → (t′′[y/t] = t′′[y/t′])
Subst t = t′ → (φ[y/t] → φ[y/t′]), for atomic φ
KiId s = s′ → Ki(s = s′)
KiDif s 6= s′ → Ki(s 6= s′)

The first group of postulates is an axiomatisation of the propositional
multi-modal system S5n. Then we have the classic postulates for quantifi-
cation for both global and local terms. The Barcan formula and its converse
guarantee that the domains of admissible individuals are independent from
global states. Finally, we have the axioms Id, Func and Subst for all terms,
while KiId and KiDif hold only for global terms.

We define proofs and theorems as standard: ` φ means that φ ∈ Ln is a
theorem in Q.S5n. Moreover, we say that φ ∈ Ln is derivable in Q.S5n from
the set ∆ of formulas in Ln - ∆ ` φ in short - iff there are φ1, . . . , φn ∈ ∆
such that ` φ1 ∧ . . . ∧ φn → φ.

Among the theorems and derived rules of Q.S5n we have:

NecAdm Admi(t) → KjAdmi(t)
Nec¬Adm ¬Admi(t) → Kj¬Admi(t)
ExAdm ∀iyφ→ (Admi(t) → φ[y/t])
GenAdm φ→ (Admi(t) → ψ[y/t]) ⇒ φ→ ∀iyψ, for y not free in φ

For reasons of space we omit the proofs. We can easily check that every
equivalence frame is a frame for Q.S5n. As a consequence, we have the
following soundness result:

LEMMA 8 (Soundness). The system Q.S5n is sound with respect to the
class FE of equivalence frames.

By this lemma and the definition of validity on the systems of global
states, the following implications hold: Q.S5n ` φ⇒ FE |= φ⇒ SGS |= φ.
Thus, we have soundness for the systems of global states:
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COROLLARY 9 (Soundness). The system Q.S5n is sound with respect to
the class SGS of the systems of global states.

By varying and regular Q.S5n we denote the systems obtained from
Q.S5n respectively by eliminating BFi−j , CBFi−j and by restricting these
postulates to i = j. We have only restricted versions of NecAdm and
Nec¬Adm for regular Q.S5n. On the other hand, varying and regular Q.S5n

are sound for varying and regular equivalence frames, therefore also for
varying and regular SGSs:

LEMMA 10 (Soundness). Varying Q.S5n is sound for varying equivalence
frames, therefore it is sound also for varying systems of global states.

LEMMA 11 (Soundness). Regular Q.S5n is sound for regular equivalence
frames, therefore it is sound also for regular systems of global states.

9 Completeness

The completeness of Q.S5n with respect to equivalence frames is proved by
means of the canonical model method. For the case in hand this technique
basically consists in showing the following fact:

If Q.S5n does not prove a formula φ ∈ Ln, then the canonical model
MQ.S5n for Q.S5n does not validate φ.

This result relies on two lemmas: the saturation lemma and the truth
lemma. In order to prove them we need the following definitions, where Λ
is a set of formulas:

Λ is consistent iff Λ 0 ⊥;
Λ is maximal iff for every φ ∈ Ln, φ ∈ Λ or ¬φ ∈ Λ;
Λ is max-cons iff Λ is consistent and maximal;
Λ is rich iff ∃xφ ∈ Λ ⇒ φ[x/c] ∈ Λ, for some c ∈ GCon, and

∃zφ ∈ Λ ⇒ φ[z/d] ∈ Λ, for some d ∈ LCon;
Λ is saturated iff Λ is max-cons and rich.

Now observe that the following lemma holds, we refer to [6] for a proof:

LEMMA 12 (Saturation lemma). If ∆ is a consistent set of the formulas
in Ln, then it can be extended to a saturated set Π of formulas on some
expansion L+

n of Ln.

If 0 φ then the set {¬φ} is consistent and by the lemma above we obtain
a saturated set Π ⊇ {¬φ}. By this remark, the set W of saturated sets
w,w′, . . . of formulas in L+

n is non-empty.
To introduce the other elements in the canonical model for Q.S5n we

need few more definitions. For closed global terms v, v′, define v ∼w v′ iff
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(v = v′) ∈ w. This is an equivalence relation and [v]w = {v′|v ∼w v′} is
the equivalence class of v in w. Since the accessibility relation in MQ.S5n

is defined so that wRiw
′ iff {φ|Kiφ ∈ w} ⊆ w′, by KiId and KiDif we

can show that the definition of [v]w is independent from w - i.e. wRiw
′

implies [v]w = [v]w′ - so we simply write [v]. We define Di,w as the set
{[v]|Admi(v) ∈ w}. By Subst, Func, NecAdm and Nec¬Adm we can show
that this definition is independent from v and w, therefore we simply write
Di. Further, for every closed local term r define a function fr such that

fr(w) =

{
[v] if there is a v such that (r = v) ∈ w;
{r′|(r′ = r) ∈ w} otherwise.

Each Fi,w is the set {fr|Admi(r) ∈ w}; by NecAdm and Nec¬Adm this
definition is provably independent from w, so we simply write Fi. Finally,
the canonical model for Q.S5n is defined as follows:

DEFINITION 13. The canonical model MQ.S5n for Q.S5n on the language
Ln, with an expansion L+

n , is the 5-tuple 〈W, {Ri}i∈A, D, {Di}i∈A, F, {Fi}i∈A,
I〉 such that:

• W is the set of saturated sets of formulas in L+
n ;

• wRiw
′ iff {φ|Kiφ ∈ w} ⊆ w′;

• D = {[v]|v ∈ L+
n } ∪ {fr(w)|r ∈ L+

n , w ∈ W} and F = {fr|r ∈ L+
n },

while Di, Fi are defined as above;

• I is an interpretation such that:

– I(c) = [c] and I(d) = fd;
– for a1, . . . , ak ∈ D ∪ F , I(fk)(~a) is a function such that

I(fk)(~a)(w) =

{
[fk(~v)] if each ai = [vi];
ffk(~e)(w) for ei = vi if ai = [vi], or ei = ri if ai = fri

– for a1, . . . , ak ∈ D, 〈~a〉 ∈ I(P k, w) iff P k(~e) ∈ w, for ei = vi and
ai = [vi] or ei = ri and ai = fri

(w).

Note that the interpretation of functions and predicates is well defined by
the axioms Func and Subst. Moreover, the definition of D guarantees that
the symbol = is interpreted as identity. Thus, we can prove the following
lemma by extending the propositional case and the remarks above.

LEMMA 14. The canonical model MQ.S5n for Q.S5n exists and satisfies
the constraints on equivalence models.
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If a formula φ ∈ Ln is not provable in varying Q.S5n, then we can
still construct the canonical model as above. Since neither NecAdm nor
Nec¬Adm are theorems in varying Q.S5n, we cannot show that Di,w and
Fi,w are independent from w. But this is not a problem as our canonical
model is a varying Kripke model anyway. Similarly, the canonical model for
regular Q.S5n satisfies the conditions on regular models by the restricted
versions BFi−i and CBFi−i.

Now let σ be an assignment to local and global variables, we can show
that for every w ∈ W , Iσ(t[~y], w) = I(t[~y/~e])(w), whenever σ(yi) = I(ei).
By this result the base case of the truth lemma below hold. In what follows
we simply write M for MQ.S5n .

LEMMA 15 (Truth lemma). For every w ∈M, φ[~y] ∈ L+
n , for σ(yi) = I(ei)

(Mσ, w) |= φ[~y] iff φ[~y/~e] ∈ w

The proof of this lemma relies on the Barcan formula for showing that
if Kiψ[~y/~e] /∈ w, then the consistent set {φ|Kiφ ∈ w} ∪ {¬ψ[~y/~e]} can be
extended to a saturated set w′ on L+

n such that wRiw
′ and (Mσ, w′) |=

¬ψ[~y] by the induction hypothesis.
By the truth lemma we conclude that the canonical model is a model for

Q.S5n, based on an equivalence frame, falsifying any unprovable formula φ.
Thus, we state the following completeness result.

THEOREM 16 (Completeness). The system Q.S5n is complete with respect
to the class FE of equivalence frames.

We note without proof that Lemma 15 holds also for varying and regular
Q.S5n, therefore these systems are complete with respect to the classes of
varying and regular equivalence frames respectively.

Further, we have completeness also with respect to the systems of global
states. In fact, if 0 φ then by Theorem 16 there exists a model M = 〈F , I〉
based on an equivalence frame F , which falsifies φ. Define the quantified
interpreted system P as 〈g(F), I〉: by definition P |= φ iff Pf = 〈f(g(F)), I〉
models φ, but by Lemma 3 f(g(F)) is isomorphic to F . Hence P 6|= φ. As
a result, we can state the main result of this paper.

COROLLARY 17 (Soundness and Completeness). For every formula φ ∈
Ln, SGS |= φ iff Q.S5n ` φ.

Finally, by analogous reasoning we can prove the following results:

COROLLARY 18. Varying Q.S5n is sound and complete for the class of
varying systems of global states.

COROLLARY 19. Regular Q.S5n is sound and complete for the class of
regular systems of global states.
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10 Conclusions

In this paper we presented a framework for quantified epistemic logics with
flexible terms based on quantified interpreted systems, an extension to first-
order of interpreted systems, the popular formalism for MAS. The language
is very expressive and particularly suited for representing relationships, it
also supports full quantification over infinite sets of objects. In Section 6 we
pointed out some problems related to agents’ knowledge of their domains
and of other agents’ domains. It is worth noting that these difficulties arise
from the specific epistemic interpretation of the modality. We put forward
a solution by suitably restricting the validity of the Barcan formula and
its converse. By outlining completeness results we have shown that this
expressiveness can be achieved while still retaining axiomatibility.
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