
The Complexity of Model Checking Concurrent Programs
against CTLK Specifications

Alessio Lomuscio, Franco Raimondi
Department of Computer Science

University College London – London, UK

{a.lomuscio,f.raimondi}@cs.ucl.ac.uk

ABSTRACT
This paper presents complexity results for model checking con-
current programs against temporal-epistemic formulae. We apply
these results to evaluate the complexity of verifying programs by
means of two model checkers for multi-agent systems: MCMAS

and Verics.

General Terms
Algorithms; Theory; Verification

Keywords
Model checking multi-agent systems; Complexity

1. PRELIMINARIES

1.1 Temporal logics and model checking
The language of Computational Tree Logic (CTL, [7, 4]) is de-

fined over a set of atomic formulae AP = {p, q, . . . } as follows:

ϕ ::= p|¬ϕ|ϕ ∨ ϕ|EXϕ|E[ϕUψ]|EGϕ.

Other temporal operators to express eventuality and universality
can be derived in standard way. We refer to [4] for more details.

CTL formulae are interpreted in Kripke models. A Kripke model
M for CTL is a tuple M = (S,R, V, I) where S is a set of states,
R ⊆ S × S is a serial transition relation (the temporal relation),
V : S → 2AP is an evaluation function, and I ⊆ S is a set of
initial states. Satisfiability of a CTL formula ϕ at a state s ∈ S in a
given CTL model M is defined in a standard way, see [4] for more
details.

Model checking is the problem of establishing whether or not
a formula ϕ is satisfied on a given model M . While this check
may be defined for a model M of any logic, traditionally the prob-
lem of model checking has been investigated mainly for temporal
logics. In practical instances, when using model checkers, states
and relations in temporal models are not listed explicitly. Instead,
a compact description is usually given for a model M . Various

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

techniques are available to give these specifications, a popular be-
ing concurrent programs [6]. Concurrent programs offer a suitable
framework to investigate the computational complexity of model
checking when compact representations are used because, as exem-
plified in Section 3, various techniques can be reduced as accepting
concurrent programs as input.

Formally, a program in this setting is a tuple D =< AP,AC,
S,∆, s0, L >, where AP is a set of atomic propositions, AC
is a set of actions, S is a set of states, ∆ : S × AC → S is
a transition function, s0 is an initial state, and L : S → 2AP

is a valuation function. Given n programs Di =< APi, ACi,

Si,∆i, s
0

i , Li > (i ∈ {1, . . . , n}), a concurrent program DC =
< APC , ACC , SC ,∆C , s

0

C , LC > is defined as the parallel com-
position of the n programs Di, as follows: APC = ∪1≤i≤nAPi;
ACC = ∪1≤i≤nACi; SC =

∏
1≤i≤n

Si; (s, a, s′) ∈ ∆C iff (i)
∀1 ≤ i ≤ n, if a ∈ ACi, then (s[i], a, s′[i]) ∈ ∆i, where s[i] is the
i-th component of a state s ∈ S; (ii) if a 6∈ ACi, then s[i] = s′[i];
LC(s) = ∪iLi(s[i]) (in the remainder, we will drop the subscript
C when this is clear from the context). CTL formulae can be inter-
preted on a (concurrent) program D by using the standard Kripke
semantics for CTL formulae. By slight abuse of notation, we will
sometimes refer to the programsDi and toD with the term “Kripke
models”.

Traditionally, the complexity of temporal logics model checking
has been investigated assuming that models are given explicitly.
Following this approach, the complexity is given as a function of
the size of the model and of the formula being checked. In the
case of CTL, the problem of model checking is P-complete [3].
Instead, the complexity of model checking concurrent programs
against CTL specifications is investigated in [6] where it is shown
that model checking is a PSPACE-complete problem.

1.2 CTLK
CTLK is an extension of CTL with epistemic operatorsKi, i ∈

{i, . . . , n} [5]. The formula Kiϕ expresses the fact that agent i
knows ϕ. CTLK formulae may be interpreted in a Kripke model
M = (W,Rt,∼1, . . . ,∼n, V) where W is a set of states, Rt ⊆
S × S is a serial transition relation (the temporal relation), ∼i⊆
S × S are equivalence relations (the epistemic relations), and V :
S → 2AP is an evaluation function for a given set AP of atomic
propositions. Formulae are interpreted in a standard way, by ex-
tending the interpretation of CTL formulae with the following:

M,w |= Kiϕ iff for all w′ ∈ W , w ∼i w
′

implies M,w′ |= ϕ,
CTLK formulae can be interpreted in concurrent programs as

well: the temporal operators of CTLK are interpreted as in [6],
while epistemic operators are evaluated by defining epistemic ac-
cessibility relations based on the equality of the components of the

states of a concurrent program (a similar approach can be found
in [5]).

2. COMPLEXITY OF MODEL CHECKING
CONCURRENT PROGRAMS

In this section we present a proof for the PSPACE-completeness
of the problem of model checking concurrent programs against
CTLK specifications. The following two lemmas will be used:

LEMMA 1. Given a Kripke model M = (S,R, V, I) for CTL,
a state s ∈ S, and a formula ϕ, M, s |= EGϕ iff there exists
a sequence of states π starting from s of length |π| ≥ |M | s.t.
M,πi |= ϕ for all 0 ≤ i ≤ |M |.

LEMMA 2. Given a Kripke model M = (S,R, V, I) for CTL,
a state s ∈ S, and two formulae ϕ and ψ, M, s |= E[ϕUψ] iff
there exists a sequence of states π starting from s s.t. M,πi |= ψ
for some i ≤ |M |, and M,πj |= ϕ for all 0 ≤ j < i.

THEOREM 1. Model checking concurrent programs against
CTLK specifications is a PSPACE-complete problem.

PROOF. Given a CTLK formula and n programs Di defining
a concurrent program D , we define a deterministic, polynomially-
space bounded Turing machine T that halts in an accepting state
iff ¬ϕ is satisfiable in D (i.e., iff there exists a state s ∈ S such
that D, s |= ¬ϕ). Based on this, we conclude that the problem
of model checking is in co-PSPACE. As deterministic complexity
classes are closed under complement, we conclude that the problem
is PSPACE-complete (the lower bound being given by the com-
plexity of model checking CTL in concurrent programs). T is a
multi-string Turing machine whose inputs are the n programs Di

and the formula ϕ. T operates “inductively” on the structure of the
formula ϕ (see also [2] for similar approaches), by calling other
machines (“sub-machines”) dealing with a particular logical oper-
ator only. The input of T includes the states of the program Si

(1 ≤ i ≤ n), the transition relations, the evaluation functions and
all the other input parameters of each ∆i. This information can be
stored on a single input tape, separated by appropriate delimiters,
together with the formula ϕ. T returns “yes” iff there exists a state
s ∈ S such that D, s |= ¬ϕ. The machine T iterates over the set
of states s = (s1, . . . , sn) and checks whether or not ¬ϕ holds in
one of these. If a state is found such that D, s |= ¬ϕ, then the ma-
chine halts in a “yes” state; if the machine loops over all the states
without finding a state satisfying ¬ϕ, then T halts in a “no” state.

The REACHABILITY algorithm [9] can be used here to check
reachability from initial states; notice that only a polynomial amount
of space is needed to store states, as they are the product of states
of Di.

A “main” procedure SATISFIABLE can be defined, which oper-
ates recursively on the structure of the formula by calling one of
the machines described below. Each machine accepts a state s and
a formula, and returns either “NO” (the formula is false at s) or
“YES” (the formula is true at s). Notice that each machine can call
any of the other machines. The following is a description of the
formula-specific machines that may be called by SATISFIABLE:

• The machine Tp for atomic formulae simply checks whether
or not a state is in L(state), where the evaluation L is
obtained from the evaluations for each program in the input
string; if the proposition is true at state, then Tp returns
YES, otherwise it returns NO.

• The machine T¬ for formulae of the form ψ = ¬ϕ calls the
appropriate machine for ϕ and returns the opposite value.

• The machine T∨ for the disjunction ψ = ψ′ ∨ ψ′′ first calls
the machine for ψ′. If the result is yes, it outputs yes, other-
wise it outputs the result of the machine for ψ′′.

• The machine TEX accepts a formula ϕ and a state as input;
the machine iterates over the set of states and for each state
it checks whether the state is reachable from the input state;
if this is the case, then TEX checks whether or not ϕ is sat-
isfied. If TEX finds such a state, then it halts in a YES state;
otherwise, if no reachable state satisfying ϕ can be found
TEX terminates in a NO state. Notice that this machine uses
a polynomial amount of space: the space required to store
the value of the state.

• The machine TEU for formulae of the form ψ = E[ϕ′Uψ′′]
is as follows:
TEU (ϕ,ψ,state) {
state2 = (1, 1, . . . , 1);
repeat
if SATISFIABLE(ψ,state2) then
if (state == state2) return YES;
else

if (PATH(state,state2,ϕ,N)) then
return YES;

else
move to next state2;

end if;
end if;

else
move to next state2;

end if
until last state2;
return NO;
}

The machine TEU accepts two formulae and a state. The
machine checks whether ψ holds in state2 and whether
state and state2 are the same state. If this is the case,
then the machine halts in a YES state. Otherwise, the ma-
chine checks whether or not there is a sequence of states from
state to state2 such that ϕ holds along the sequence.
This check is performed by the procedure
PATH(state,state2,ϕ,N), which returns YES if there is
such a path, of length at most 2N . By Lemma 2, we take
N to be the logarithm of the size of the model. A recur-
sive algorithm to solve PATH is presented in [9]; this algo-
rithm employs at most space proportional to N , and it can
be extended by adding a simple check for the satisfiability
of ϕ. As there can be at most |ϕ| checks, PATH uses at
most O(n · |{Di}i∈{1,...,n}| · |ϕ|) space (i.e. it operates in
PSPACE).

• Based on Lemma 1, a non-deterministic machine NTEG can
be defined to guess a sequence of states of length greater
than |{Di}i∈{1,...,n}| in which ϕ holds. When (and if) such
a sequence is found, the machine returns yes (notice that
this machine uses a polynomial amount of space and always
halts). As NPSPACE=PSPACE [9], it is possible to build
a deterministic machine TEG in PSPACE that returns yes
iff there exists a sequence of states of length greater than
|{Di}i∈{1,...,n}| in which ϕ holds.

• The machine TK accepts a formula ϕ, an index i, and and
a state as input; this machine operates similarly to TEX , but
uses epistemic relations instead of temporal relations.

Each of the machines above uses at most a polynomial amount
of space, and there are at most |ϕ| calls to these machines in each
run of T . Thus, T uses a polynomial amount of space.

This proof differs from the proof of PSPACE-completeness for
model checking concurrent programs against CTL specifications
presented in [6]. The authors of [6] investigate the complexity
of various automata and apply their results to the verification of
branching time logics. This technique cannot be easily extended
to the verification of temporal and epistemic modalities. Thus, the
proof above provides an alternative proof of the upper bounds for
model checking CTL in concurrent programs, which can be easily
extended to CTLK.

3. APPLICATIONS

3.1 The complexity of model checking MC-
MAS programs

MCMAS [11] is a symbolic model checker for interpreted sys-
tems. Interpreted systems [5] provide a semantics for temporal and
epistemic operators, based on a system of agents. Each agent is
characterised by a set of local states, by a set of actions, by a pro-
tocol specifying the actions allowed in each local state, and by an
evolution function for the local states. MCMAS accepts as input a
description of an interpreted system and builds a symbolic represen-
tation of the model by using Ordered Binary Decision Diagrams.
We refer to [5, 10, 11] for more details. An interpreted systems
described in MCMAS can be reduced to a concurrent program: each
agent can be associated with a program Di =< APi, ACi, Si,∆i,
s0i , Li >, where ACi is the set of actions for agent i, Si is the set
of local states for agent i, and the evolution function ∆i is the one
provided for the agent.

Conversely, the problem of model checking a formula ϕ in the
parallel composition of n programs Di =< APi, ACi, Si,∆i,
s0i , Li > can be reduced to an MCMAS program. Indeed, it suf-
fices to introduce an agent for each program, whose local states are
Si and whose actions are ACi. The transition conditions for the
agent can be taken to be ∆i, augmented with the condition that
a transition between two local states is enabled if all the agents in-
cluding the same action inACi perform the transition labelled with
the particular action.

Therefore, we conclude that the problem of model checking MC-
MAS programs is a P-complete problem.

It is worth noticing that the actual implementation of MCMAS

requires, in the worst case, an exponential space to perform verifi-
cation. Indeed, MCMAS uses OBDDs, and it is known [1] that for
certain problems OBDDs may have a size which is exponential in
the number of variables used, irrespective of the ordering of vari-
ables chosen.

3.2 The complexity of model checking Verics
programs

Verics [8] is a tool for the verification of various types of timed
automata and for the verification of CTLK properties in multi-
agent systems. In this section we consider only the complexity
of verification of CTLK properties in Verics using un-timed au-
tomata.

A multi-agent system is described in Verics by means of a net-
work of (un-timed) automata: each agent is represented as an au-
tomaton, whose states correspond to local states of the agent. In
this formalism a single set of action is present, and automata syn-
chronise over common actions.

The reduction from Verics code to concurrent programs is straight-
forward: each automaton is a program Di and no changes are re-
quired for the parallel composition, and similarly a concurrent pro-
gram can be seen as a network of automata. Thus, we conclude

that the problem of model checking un-timed Verics programs is
PSPACE-complete.

Notice that the actual implementation of Verics performs ver-
ification by reducing the problem to a satisfiability problem for
propositional formulae. Similarly to MCMAS, this reduction may
lead to exponential time and space requirements in the worst case.

Acknowledgements
We gratefully acknowledge Mike Wooldridge for the valuable com-
ments on an earlier draft of this paper.

Note
A preliminary version of this paper appears in the proceedings of
the workshop Concurrency Specification and Programming (CS&P
2005), Ruciane Nida, Poland.

4. REFERENCES
[1] R. E. Bryant. On the complexity of VLSI implementations

and graph representations of boolean functions with
application to integer multiplication. IEEE Trans. Comput.,
40(2):205–213, 1991.

[2] Allan Cheng. Complexity results for model checking.
Technical Report RS-95-18, BRICS - Basic Research in
Computer Science, Department of Computer Science,
University of Aarhus, February 1995.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using temporal
logic specifications: A practical approach. ACM
Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge, 1995.

[6] O. Kupferman, M. Y. Vardi, and P. Wolper. An
automata-theoretic approach to branching-time model
checking. Journal of the ACM, 47(2):312–360, 2000.

[7] K. McMillan. Symbolic model checking: An approach to the
state explosion problem. Kluwer Academic Publishers, 1993.

[8] W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, and
M. Szreter. VerICS 2004: A model checker for real time and
multi-agent systems. In Proceedings of the International
Workshop on Concurrency, Specification and Programming
(CS&P’04), volume 170 of Informatik-Berichte, pages
88–99. Humboldt University, 2004.

[9] Christos H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[10] F. Raimondi and A. Lomuscio. MCMAS - A tool for
verification of multi-agent systems.
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/.

[11] F. Raimondi and A. Lomuscio. Automatic verification of
multi-agent systems by model checking via OBDDs. Journal
of Applied Logic, 2005. To appear in Special issue on
Logic-based agent verification.

